ATCA Carrier Board
with Dedicated IPMI Controller (2)

P. Predki, P. Perek, D. Makowski, A. Napieralski
Technical University of Lodz
Department of Microelectronics and Computer Science
Lodz, Poland

We acknowledge funding from the European Commission
under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.
Outline

- Hardware structure of IPMC
- IPMC Software
- Summary
Structure of Renesas-based IPMC

- AMC BAY 1
- AMC BAY 2
- AMC BAY 3
- Sensors
 - MAX16031 Temp., Volt., Curr.
 - MAX6626 Temperature1
 - MAX6626 Temperature2
 - ATC210 DC/DC Temp., Volt., Curr.
- Peripherals
 - AT24C512 EEPROM
 - Peripheral I2C

- Front Panel
 - Hot-swap plug
 - Blue LED

- IPMB-0-A
- IPMB-0-B

- Zone 1
I2C connections

- Intelligent Platform Management Bus (IPMB–0)
 - 2 redundant channels
- Intelligent Platform Management Bus (IPMB–L)
 - Separate channels for AMC Modules
- Peripheral bus
Software

- Initialization part
 - Control register configuration
 - Peripheral configuration

- Main Loop
 - Event processing
 - IPMB-0 messages handling
 - IPMB-L messages handling
Event handling

- **Problem:**
 - Low response times to various events are essential for LLRF control system
 - Long ISR execution time = missing other events

- **Solution:**
 - Event-driven cyclic executives solution in conjunction with external device interrupts
 - ISRs only feed the main event handling loop (if possible)
Message queuing

- **IPMB–0**
 - Single incoming queue
 - Single outgoing queue
 - Round robin algorithm

- **IPMB–L**
 - Single incoming queue
 - Separate outgoing queues
Summary

- Greater clock frequency speeds up the operation of the device
- Six I2C channels provide stable and parallel communication with all the components on the IPMB
- Single-device IPMC
 - Increases the reliability
 - Facilitates the software development and maintenance
 - Removes the need for interfacing between devices
THE END

- Questions?
- Comments?