AMC Radiation Monitoring Module for ATCA/μTCA Based Low Level RF Control System

17th International Conference Mixed Design of Integrated Circuits and Systems
MIXDES 2010
Wroclaw, Poland, 24-26 June 2010

Tomasz Kozak
Dariusz Makowski

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.
Outline

1. Radiation issues in aspect of linear accelerator control systems.
2. Two approaches to the architecture of Radiation Monitoring System.
3. Dosimetry methods.
4. Module hardware overview.
5. VHDL firmware for the Module
6. Conclusions and future plans.
Radiation issues in aspect of linear accelerator control systems

Gamma and neutron radiation are produced as parasitic effect of normal operation of a linear accelerator and have negative influence on electronic equipment installed inside the tunnel.

Gamma radiation: general degradation of electronics electrical parameters

Neutron fluence:
- Single Event Upsets (SEU)
- Single Event Functional Interrupt (SEFI)
- Single Event Transient (SET)
- Single Event Latch-up (SEL)

<table>
<thead>
<tr>
<th>Expected radiation environment characteristic values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection ability</td>
</tr>
<tr>
<td>Fluence range</td>
</tr>
<tr>
<td>The lowest fluence</td>
</tr>
<tr>
<td>Dose range</td>
</tr>
<tr>
<td>The lowest dose</td>
</tr>
<tr>
<td>Energy range</td>
</tr>
</tbody>
</table>
Knowledge of accelerator’s radiation environment and doses absorbed by electronics helps to:

• estimate electronic lifetime
• schedule replacement of electronic devices
• detect of errors in control systems caused by radiation high level

It may increase reliability of accelerator control systems and decrease costs of machine maintenance.

(LLRF System based on xTCA)
Two approaches to the architecture of Radiation Monitoring System

Radiation Monitoring System

System integrated with xTCA architecture

Main advantages:
• Full integration with LLRF system
• No issues connected with communication interfaces and powering
• Easy dose gauge exactly inside ATCA crates
• No extra wiring

Main disadvantages:
• Crates’ shielding may decrease sensitivity of dosimeters

System with independent architecture

Main advantages:
• Flexible and full reconfigurable system
• Possibility to gauge doses near xTCA crates and other desired places

Main disadvantages:
• Issues concerning communication interfaces
• Problems with powering
• Extra wiring
Dosimetry methods

Dosimeters for AMC Radiation Monitoring Module should fulfill following requirements:

• **High selectivity** — selective measurement of neutron and gamma radiation

• **Dynamic and wide dose ranges** — $10^{-3} : 10^3$ Gy for gamma and $10^4 : 10^{10}$ neutron·cm$^{-2}$

• **Easy integration with digital readout subsystem**

• **Small size and low costs of dosimeters**

The dosimeters chosen for the module:

Gamma radiation:
- 400 nm (Implanted) or 100nm Tyndall RadFET
 (Radiation sensitive Field Effect Transistor)

Neutron fluence:
- Samsung K6T4008C1B SRAM memory with decreased supply voltage
Module is built as a AMC board.

It is divided into two submodules – AMC A and AMC B linked via 120 pins connector.

- The AMC B carry out the main data processing unit (Virtex 5 PFGA), MMC, power units and communication links.

- The AMC contains eights Samsung SRAM chips and two RadFETs readout circuits with two digital thermometers.

Block diagram of AMC Radiation Monitoring Module
Components of the System - Active radiation detector

Pictures of assembled AMC Radiation Monitoring Module
VHDL firmware for the Module

Block diagram of VHDL module designed for AMC Radiation Monitoring Module
Conclusions and future plans

Conclusions:
1. Integration with LLRF control system solves communication interfaces, powering and extra wiring issues.
2. Module is suitable to be installed in LLRF system based on ATCA or µTCA architecture.
3. Modular construction of VHDL code increases flexibility of solution – new communication interfaces can be easily added e.g. GbEthernet.
4. Cheap, easily accessible, small dosimeters which should fulfill requirements of the project.

Future plans:
1. Test of the solution in target environment of the linear accelerator.
2. Design of the second revision which correct errors present in current version and will be suitable for AMC B with Ethernet links.
Thank you for your attention

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

Stypendysta projektu „Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki Łódzkiej - zarządzanie uczelnią, nowoczesna oferta edukacyjna i wzmacnianie zdolności do zatrudniania, także osób niepełnosprawnych”