

Multiple Resonance Crossings with Space Charge and Electron Cloud

G. Franchetti EuCARD's, 2nd Annual Meeting 11.05.2011, Paris

Resonance crossing phenomena

Space charge multiple resonance crossing

Electron cloud multiple resonance crossing

Conclusions

The dynamics issue

If the tune modulation frequency is small with respect to the fast frequency the dynamics can be of a "tune migration"

Transverse-Longitudinal coupling via space charge

Х

A particle experiences a space charge strength from the local bunch density, which is proportional to the longitudinal position

Transverse space charge force

$$F \propto \exp\left[-\frac{1}{2}\left(\frac{z}{\sigma_z}\right)^2\right] \times \frac{1}{r} \left\{1 - \exp\left[-\frac{1}{2}\left(\frac{r}{\sigma_r}\right)^2\right]\right\}$$

Iongitudinal modulation transverse

Ζ

Amplitude dependent detuning from space charge

The space charge detuning has different nature from the lattice nonlinear errors induced detuning

Multiple resonance crossing in bunched beams induced by space charge

Classification of resonance crossing

Trapping into resonance

Scattering by resonance Basic phenomena although the tune is particles cross the modulated particles separatrix but do not remain locked on the remain inside the island **Separatrix crossing** resonance Islands gives a kick to Large excursion of particles particle (scattering of locked to compensate the the invariant) modulation of the detuning All possible intermediate dynamical regimes are possible Adiabatic **Non-Adiabatic** G. Franchetti 5/2011

Adiabatic / Non adiabatic Regimes

Tune on the Fixed point $Q_{xf}(n)$

If during 1 revolution around the fixed point the island moves less than its size than the particle can remain trapped

$$T \equiv rac{\partial x_f(n)}{\partial n} rac{1}{Q_{xf}(n)\Delta x(n)}$$

T << 1 characterize the adiabatic regime

A.W. Chao and Month NIM 121, 129 (1974). A. Schoch, CERN Report, CERN 57-23, (1958) A.I. Neishtadt, Sov. J. Plasma Phys. 12, 568 (1986)

Machine operations typically are in a non adiabatic regime

Multiple resonance crossing in SIS100

Mitigation of long term effects

Compensate the resonance Qx + 2 Qy = 56without exciting the resonance 3 Qx = 56

Compensation strategy

Cancellation of the driving terms of Qx + 2 Qy = 56 and 3 Qx = 56at the crossing of the two resonances

Beam loss prediction for SIS100

Transverse-Longitudinal coupling via electron-colud

G S 1

In the reference frame of the bunch

But electrons have different wavelength according to their amplitude

EC-pinch in dipoles

For nominal LHC bunch

Based on the ``strong field approximation"

Multiple resonance crossing in bunched beams induced by electron cloud

1D Modeling of EC incoherent effects

BEAM07

1D model of EC pinch

Electrons are in two planes moving apart according to the longitudinal position of a particle in a bunch

1 localized EC kick excite all structure resonances

Crossing of the 4th order structure resonance

Trapping process for the 1D electron-cloud map

In red are show the orbit of the "frozen system"

This resonance crossing in NOT ADIABATIC

Sinusoidal Periodic Crossing: Period 25000 turns

We find the existence of an "attraction point", which characterize the trapping of particles

The same beam dynamics in the reference frame of the "attraction point"

Sinusoidal Periodic Crossing: Period 25000 turns

Modeling of the EC rings in field free regions

Tune footprint

Example for DQ = 0.2

Example of an estimate for LHC

Conclusion

- Incoherent effect are caused by the multiple crossing of the same resonance by a beam particle
- The single particle tune modulation is caused by transverse-longitudinal coupling created by: chromaticity, space charge, pinched electron cloud
- The difference between the source of the coupling arises from the type of amplitude dependent detuning created
- These effect are of relevance for long term storage in high intensity machines and in presence of electron cloud (LHC, SIS100)

Source/Feature	Detuning	Amplitude dependence	Driving resonances	Experiment verification
Chromaticity	weak	weak	no (?)	yes
Space Charge	strong	strong/decrease	yes/no	yes/ongoing
Electron Cloud	strong/weak	strong/decrease	yes	?
Nonlinearities	strong/weak	strong/increase	yes	yes

Thanks to

GSI	O. Choriny, W. Bayer, O. Boine-Frankenheim, C. Omet, B. Franczak, P. Forck, T. Giacomini, I. Hofmann, M. Kirk, H. Kollmus, T. Mohite, A. Parfenova, P. Schuett, P. Spiller	
BNL	W. Fischer	
CERN	G. Arduini, V. Baglin,E. Benedetto, O.E. Berrig, O. Bruening,C. Carli, R. Cappi, M. Giovannozzi, K. Li, M. Martini, E. Metral, R.R. Steeremberg, G. Rumolo, F. Zimmermann	
ITEP	P. Zenkevich, A.Bolshakov, V. Kapin	
КЕК	K. Ohmi	
SLAC/Stanford	A. Chao	
SRI	A.I. Neishtadt	
Univ. Bologna	G. Turchetti, C. Benedetti, A. Bazzani	

