

AMC Radiation Monitoring Module for ATCA/µTCA Based Low Level **RF Control System**

17th International Conference Mixed Design of Integrated Circuits and Systems **MIXDES 2010** Wroclaw, Poland, 24-26 June 2010

Tomasz Kozak

Dariusz Makowski

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

Outline

- 1. Radiation issues in aspect of linear accelerator control systems.
- 2. Two approaches to the architecture of Radiation Monitoring System.
- 3. Dosimetry methods.
- 4. Module hardware overview.
- 5. VHDL firmware for the Module
- 6. Conclusions and future plans.

Radiation issues in aspect of linear accelerator control systems

Gamma and neutron radiation are produced as parasitic effect of normal operation of a linear accelerator and have negative influence on electronic equipment installed inside the tunnel.

Gamma radiation: general degradation of electronics electrical parameters

Neutron fluence:

- Single Event Upsets (SEU)
- Single Event Functional Interrupt (SEFI)
- Single Event Transient (SET)
- Single Event Latch-up (SEL)

Expected radiation environment characteristic values	
Detection ability	Gamma radiation and neutron fluence
Fluence range	10 ⁶ - 10 ¹⁰ neutron·cm ⁻²
The lowest fluence	10 ⁴ - 10 ⁵ neutron·cm ⁻²
Dose range	$10^2 - 10^3 \text{ Gy}$
The lowest dose	10 ⁻³ – 10 ⁻² Gy
Energy range	up to 20 MeV

Radiation issues in aspect of linear accelerator control systems

Knowledge of accelerator's radiation environment and doses absorbed by electronics helps to:

- estimate electronic lifetime
- schedule replacement of electronic devices
- detect of errors in control systems caused by radiation high level

It may increase reliability of accelerator control systems and decrease costs of machine maintenance.

on xTCA)

Two approaches to the architecture of **Radiation Monitoring System**

Radiation Monitoring System

System integrated with xTCA architecture

Main advantages:

- •Full integration with LLRF system
- •No issues connected with communication interfaces and powering
- •Easy dose gauge exactly inside ATCA crates
- •No extra wiring

Main disadvantages:

•Crates' shielding may decrease sensitivity •Extra wiring of dosimeters

System with independent architecture

Main advantages:

- •Flexible and full reconfigurable system
- •Possibility to gauge doses near xTCA crates and other desired places

Main disadvantages:

- •Issues concerning communication interfaces
- •Problems with powering

Dosimetry methods

Dosimeters for AMC Radiation Monitoring Module should fulfill following requirements:

- •**High selectivity** selective measurement of neutron and gamma radiation
- •Dynamic and wide dose ranges − 10⁻³:10³ Gy for gamma and 10⁴:10¹⁰ neutron·cm⁻²
- •Easy integration with digital readout subsystem
- •Small size and low costs of dosimeters

The dosimeters chosen for the module: Gamma radiation:

400 nm (Implanted) or 100nm Tyndall RadFET (Radiation sensitive Field Effect Transistor)

Module hardware overview

Module is built as a AMC board.

It is divided into two submodules – AMC A and AMC B linked via 120 pins connector.

- The AMC B carry out the main data processing unit (Virtex 5 PFGA), MMC, power units and communication links.
- The AMC contains eights Samsung SRAM chips and two RadFETs readout circuits with two digital thermometers.

Block diagram of AMC Radiation Monitoring Module

Components of the System - Active radiation detector

VHDL firmware for the Module

8

Conclusions and future plans

Conclusions:

- 1. Integration with LLRF control system solves communication interfaces, powering and extra wiring issues .
- 2. Module is suitable to be installed in LLRF system based on ATCA or μ TCA architecture.
- 3. Modular construction of VHDL code increases flexibility of solution new communication interfaces can be easily added e.g. GbEthernet
- 4. Cheap, easily accessible, small dosimeters which should fulfill requirements of the project

Future plans:

- 1. Test of the solution in target environment of the linear accelerator
- 2. Design of the second revision which correct errors present in current version and will be suitable for AMC B with Ethernet links.

Thank you for your attention

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

