LHeC Linac-Ring Option

Frank Zimmermann

EucARD-AccNet-RFTech Workshop PSI, 2 December 2010

EUCARD

J. Osborne

 (LH_{O})

Linac-Ring LHeC – two options

performance targets

e- energy ≥60 GeV luminosity ~10³³ cm⁻²s⁻¹ total electrical power for e-: ≤100 MW e⁺p collisions with similar luminosity simultaneous with LHC pp physics e⁻/e⁺ polarization detector acceptance down to 1°

getting all this at the same time is very challenging

road map to 10³³ cm⁻²s⁻¹

 $4\pi e$

luminosity of LR collider:

(round beams)

highest proton beam brightness "permitted" (ultimate LHC values)

γε=3.75 μm N_b =1.7x10¹¹ bunch spacing 25 or 50 ns average e⁻ current !

b,p

 \mathcal{E}

smallest conceivable

proton β^* function:

=0.1 m

- reduced /* (23 m \rightarrow 10 m)

- squeeze only one p beam

- new magnet technology Nb₃Sn

maximize geometric overlap factor

- head-on collision
- small e- emittance
- *θ*_c=0 *H*_{hg}≥0.9

electron beam

e- emittances and β^* not critical (protons are big, ~7µm!)

most important parameter: average beam current

in addition: bunch structure and polarization

CLIC main beam ~ 0.01 mA (factor 600 missing)

lowering voltage, raise bunch charge & rep rate \rightarrow 0.06 mA (NIMA 2007) CLIC drive beam (30 mA, but 2.37 GeV) ILC design current ~ 0.05 mA (factor ~100 missing) SC linacs can provide higher average current, e.g. by increasing the duty factor 10-100 times, or even running cw, at lower energy & lower gradient

example design average currents: CERN HP-SPL: ~2.5 mA (50 Hz) Cornell ERL ~100 mA (cw) eRHIC ERL ~ 50 mA at 20 GeV (cw)

LHeC needs ~6 mA at 60 GeV

beam power

6.4 mA at 60 GeV
→ 384 MW beam power !
→ ~800 MW electrical power !!??

need for energy recovery! power reduced by factor (1- η_{ERL})

→ LHeC ERL high-luminosity baseline

one more ingredient

- choice of SC linac RF frequency:
- 1.3 GHz (ILC)?
- ~720 MHz?!
- requires less cryo-power (~2 times less from BCS theory); true difference ↔ residual resistance,
 [J. Tückmantel, E. Ciapala]
- better for high-power couplers? [O. Napoly] but the couplers might not be critical
- fewer cells better for trapped modes [J. Tückmantel]
- synergy with SPL, eRHIC and ESS

linac RF parameters

	ERL 720 MHz	ERL 1.3 GHz	Pulsed
duty factor	CW	CW	0.05
RF frequency [GHz]	0.72	1.3	1.3
cavity length [m]	1	~1	~1
energy gain / cavity [MeV]	18	18	31.5
<i>R/Q</i> [100 Ω]	400-500	1200	1200
<i>Q</i> ₀ [10 ¹⁰]	2.5-5.0	2 ?	1
power loss stat. [W/cav.]	5	<0.5	<0.5
power loss RF [W/cav.]	8-32	13-27 ?	<10
power loss total [W/cav.]	13-37 (!?)	13-27	11
"W per W" (1.8 k to RT)	700	700	700
power loss / GeV @RT [MW]	0.51-1.44	0.6-1.1	0.24
length / GeV [m] (<i>filling</i> =0.57)	97	97	56

ERL electrical site power

cryo power for two 10-GeV SC linacs: <u>28.9 MW</u> MV/m cavity gradient, 37 W/m heat at 1.8 K 700 "W per W" cryo efficiency *RFTech guidance requested!*

RF power to control microphonics: 22.2 MW

10 kW/m (eRHIC), 50% RF efficiency

RF for SR energy loss compensation: <u>24.1 MW</u> energy loss from SR 13.2 MW, 50% RF efficiency cryo power for compensating RF: <u>2.1 MW</u> 1.44 GeV linacs microphonics control for compensating RF: 1.6 MW

injector RF: <u>6.4 MW</u>

500 MeV, 6.4 mA, 50% RF efficiency

magnets: <u>3 MW</u>

grand total = 88.3 MW

The eRHIC-type cryo-module containing six 5-cell SRF 703 MHz cavities.

I. Ben-Zvi

Model of a new 5-cell HOM-damped SRF 703 MHz cavity.

measured Q vs. field for the 5-cell 704 MHz cavity built and tested (BNL -I)

predicted cryopower based on eRHIC

I. Ben-Zvi

The relevant parameters for BNL-I cavity and for new 5-cell cavity upon which we based our calculations (BNL-III) are:

Parameter	Units	Value BNL-I	Value BNL-III
Geometry factor	Ohms	225	283
R/Q per cell	Ohms	80.8	101.3
Bpeak/Eacc	mT/MV/m	5.78	4.26

Calculation:

Assume Q vs. E as measured for BNL-I. Assume 18 MV/m operation. Assume losses scale with surface magnetic field. For comparison with measured results, scale field by the magnetic field ratio of BNL-III to BNL-I, giving 13.3 MV/m. The measured Q for BNL-I at this field is 4E10. Assume losses scale down by the geometry factor, that leads to a Q of 5E10. With this Q at 18 MV/m the cryogenic load is 13 W/cavity at 1.8 K (instead of 37 W/cavity!)

LHeC ERL RF system at 721 MHz

E. Ciapala, LHeC 2010

Energy = 3 * 20 GeV, 2 x 10 GeV Linacs, 6.6 mA, Take 721 MHz, to allow 25 ns bunches

Take SPL type cavity @18 MV/m (similar to BNL design for eRHIC)

- 1.06 m/cavity => 19.1 MV/cav => 1056 cavities total (=132 x 8)
- Take 8 cavities in a 14 m cryomodule (cf SPL) => 66 cryomodules/linac

Total length = 924 m/linac + margin ~10%

- Power loss in arcs = 14.35 MW, 13.6 kW/cavity, Take P_{rf} = 20 kW/cavity with overhead for feedbacks, total installed RF 21 MW.
- No challenge for power couplers, power sources could be solid state
- However, still need adjacent gallery to house RF equipment (high gradient = radiation !) 4-5 m diameter sufficient
- Synchrotron radiation losses in arcs: Energy difference accelerated and decelerated beam
- Can it be fully **compensated by adjusting phases in the linacs**, or do we need **re-accelerating 'mini'-linacs**? Needs further study

• <u>Question</u> Could hardware prototyping be initiated, on SC cavities, - good synergy with SPL Proton driver study which is well underway, test of ERL concept at CERN ?

ERL configuration

total circumference ~ 8.9 km

ERL component lengths

10-GeV linac length: 1008 m

cavity length 1 m, 56 m long FODO cell with 32 cavities, #cavities/linac = 576, cavity filling factor = 57.1%

effective arc radius = 1000 m

bending radius = 764 m, dipole filling factor = 76.4%
(A. Bogacz)

SRF compensation linac: maximum 84 m [at 60 GeV]

combiners & splitters: 20-30 m each

e-final focus: 200-230 m (R. Tomas)

total circumference = LHC circumference / 3 (D. Schulte)

underground layout / integration with LHC

underground layout / integration with LHC

J.Osborne / A.Kosmicki CERN/GS

IP parameters

	protons	electrons
beam energy [GeV]	7000	60
Lorentz factor γ	7460	117400
normalized emittance $\gamma \epsilon_{x,y}$ [µm]	3.75	50
geometric emittance $\epsilon_{x,y}$ [nm]	0.50	0.43
IP beta function $\beta^*_{x,y}$ [m]	0.10	0.12
rms IP beam size $\sigma^*_{x,y}$ [µm]	7	7
rms IP divergence $\sigma'_{x,y}$ [µrad]	70	58
beam current [mA]	≥430	6.6
bunch spacing [ns]	25 or 50	50
bunch population	1.7x10 ¹¹	2x10 ⁹
crossing angle	0.0	

beam-beam effects

protons

- head-on tune shift: $\Delta Q=0.0001 tiny$
- long-range effect: none

36 σ_p separation at s=3.75 m

emittance growth due to e-beam position jitter

p kick 10 nrad (~10⁻⁴ σ *') for 1 σ offset,

e- turn-to-turn random orbit jitter $\leq 0.04\sigma$

[scaled from K. Ohmi, PAC'07;

see also D. Schulte, F. Zimmermann, EPAC2004]

electrons

can we achieve this stability?

disruption

 $D_{x,y}$ ≈6, θ_0 ≈600 µrad (≈10 $\sigma^{*'}$) *large*

pulsed linac for 140 GeV

- linac could be ILC type (1.3 GHz) or 720 MHz
- cavity gradient: 31.5 MV/m, *Q*=10¹⁰
- extendable to higher beam energies
- no energy recovery
- with 10 Hz, 5 ms pulse, H_g =0.94, N_b =1.5x10⁹ : < I_e >=0.27 mA $\rightarrow L \approx 4$ x10³¹ cm⁻²s⁻¹

highest-energy LHeC ERL option

high energy e- beam is not bent; could be converted into LC?

Polarized source

Dump

High luminosity LHeC with nearly 100% energy efficient ERL. The main high-energy e- beam propagates from left to right. In the 1st linac it gains ~150 GeV (N=15), collides with the hadron beam and is then decelerated in the second linac. Such ERL could push LHeC luminosity to 10³⁵ cm⁻²s⁻¹ level.

this looks a lot like CLIC 2-beam technology

V. Litvinenko, 2nd LHeC workshop Divonne 2009

summary

ERL (60 GeV): 10³³ cm⁻²s⁻¹, <100 MW, < 9 km circumference, about 21 GV RF

pulsed linac (140 GeV) $4x10^{31}$ cm⁻²s⁻¹, <100 MW, < 9 km length, with γ -p option

high polarization possible, beam-beam benign, e+ difficult

questions to RFTech experts

LHeC ERL: 721 MHz or 1.3 GHz?

Cryo power (heat load at 1.8 K in cw)?

Power to control microphonics?

Linac position jitter?

contributors

S. Bettoni, C. Bracco, O. Brüning, H. Burkhardt, E. Ciapala, B. Goddard, F. Haug, B. Holzer, B. Jeanneret, M. Jimenez, J. Jowett, A. Kosmicki, K.-H. Mess, J. Osborne, L. Rinolfi, S. Russenschuck, D. Schulte, H. ten Kate, H. Thiesen, R. Tomas, D. Tommasini, F. Zimmermann, CERN, Switzerland; C. Adolphsen, M. Sullivan, Y.-P. Sun, SLAC, USA; A.K. Ciftci, R. Ciftci, K. Zengin, Ankara U., Turkey; H. Aksakal, E. Arikan, Nigde U., Turkey; E. Eroglu, I. Tapan, Uludag U., Turkey; T. Omori, J. Urakawa, KEK, Japan ; S. Sultansoy, TOBB, Turkey; J. Dainton, M. Klein, Liverpool U., UK; R. Appleby, S. Chattopadhyay, M. Korostelev, *Cockcroft Inst., UK;* A. Polini, INFN Bologna, Italy; E. Paoloni, INFN Pisa, Italy; P. Kostka, U. Schneekloth, DESY, Germany; R. Calaga, Y. Hao, D. Kayran, V. Litvinenko, V. Ptitsyn, D. Trbojevic, N. Tsoupas, V. Yakimenko , BNL, USA; A. Eide, NTNU, Norway ; A. Bogacz, JLAB, USA ; N. Bernard, UCLA, USA

many thanks for your attention!

