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Abstract

The Luminosity is a very important parameter for every single accelerator on the world,
because gives to us the interaction rate per unit cross section. So one of the goals of
the desinger is treat to improve as muchs as possible the luminosity, but they are others
factors which can affect and reduce it. The Crossing angle is a scheme whichs mitigates
the effect of the Long-range beam-beam on the accelerator but also reduce the luminos-
ity.One possible solution in order to keep low the Long-range beam-beam and improve
the luminosity is the Crab Cavities (CC).

The CC is a superconducting RF cavity operated in a transverse dipole mode, which
provides a transverse kick on the beam particles that varies with the longitudinal position
along the bunch. The kick produces a rotation on the bunch in order to achieve a head-on
collision and therefore increases the luminosity.
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Chapter 1

Crab Cavity Voltage

1.1 Introduction

To begin this study first calculate the energy gain for a particle which cross through an
RF cavity. Consider a patlcle g which pass for a cavity on the axis z with a speed v, and
if assume an electric field E is the only accelerating mode [1]. The longitudinal E on the

axis is

E.(z,t) = RJ[E - Ze ]
(1.1)

and the charge equation of motion is

z=v(t —tp) (1.2)

so using the Loretz Force’s equation, the energy gain for the particle is

/ Re[E.(2)e w0 dz

q/%e[e_]‘z’oEz(z)e_jw“i]dz (1.3)

where ¢y = wyto. If E.(2) is even function the equation (1.3), becomes



AE = q/Ez(z) cos(waz)dz (1.4)

The Panofsky-Wenzel theorem, yields a relation between the transverse kick (Ap,)
and the energy gain (AFE) in the next way

B doZ ~AE
——P» vy, (1.5)
R do FE,

where pg is the initial particle momentum, FEj, the initial particle energy, % is the
longitudinal phase-space of the particle, V| in the transverse gradient, (3 is the fraction
between the speed of the particle and the speed of the ligth [2].

1.2 Crab Cavity

So now we can describe the horizontal transverse kick which produce the CC (Figure 1.1)

like:

V sin(¢, + 42
Ap, = —2 Sm(g +5) (1.6)

where ¢ the particle charge, V' the voltage of the CC, ¢, the synchronous phase of the
CC, w the angular frequency of the CC, z the longitudinal coordinate of the particle with
respect to the bunch center, ¢ the velocity of ligth and E; the particle energy [3].

Now for the Figure 1.1, we have the next relation.

tan(=)=—-~ —~ — == (1.7)
z
In the other hand there is an equation which relates x with Ap,, the equation is

where, M5 is an element of the Matrix M which relates the effect of = due to a Ap,.
The Matrix M show us how we can traslate between two point in the accelerator’s lattice.



Figure 1.1: Scheme of the collision for a crossing angle.

Now replace the equation (1.6) on (1.7)

—d(M qV sin(ds+“2)
tan($) = (M, Bs )
dz
—d(Mi %)
dz
qVw
=M 1.9
L (19
and if we manipulate to get V, the result is
cE, tan(2)
V=_—"_"2/ 1.10
Miaqw ( )

Here we need to specify if we are using a Local Crab Cavity or a Global Crab Cavity.

1.2.1 Local Crab Cavity

Local Crab Cavity (LCC), in this case we put a crab cavity close to the interaction point
(IP) in such way that the phase advance difference between the CC and the IP is close to §
and a symetric position with respect to the IP we introduce other CC whichs compensates
the tranverse kick of the first one (Figure 1.2). So the effect of CC is just in a very specific
region of the lattice (Figure 1.3).



Figure 1.2: Scheme of the effect of the LCC in the horizontal axis of the bunch.

H crossing
P

LOCAL CRAB CAVITY

Figure 1.3: The LCC scheme in the lattice for a circular accelerator with a horizontal
beam crabbed due to the CC.

In the case of the LCC the M is the normal Matrix of structure

To| My M| |21
) - D 3zl a

where in (1.11), we have



My = %(cos AV + a; sin AY)
\/ 1

M12 = \/:lﬁzﬁl sin AW
M21 = —MSIDA\P + @

Pa 1 VG201

Moy = %(COS AV — g sin AV)
2

cos AU (1.12)

where, (3 2 is the beta fuction in the point (1,2), a1 2 = —%% and AV = AU, — AT,
is the phase advance between the point 1 and 2 [4].

The left CC has a voltage of

cE tan(%)
v, = ] (1.13)
qwv/ BrpPocr sin AV,

the rigth CC voltage is relate with the left CC voltage by (1.16)

VrR= —MVy
cE,tan(2)
=-M 2 1.14
% g/ BrrBocn sin AW, (1.14)

where M/, is the element (2,2) of the transfer matrix which traslate for the left CC to
the rigth CC. Using (2.17) the equation 1.16 becomes

cEy tan(%)

qw+/BrpBecr sin AV,

V= —( Beer

COS A\I’CC — XCCR sin A\I/CC)
BCC’R

(1.15)

where, ¢ is the speed of the light, E, the particle energy, accr is the a function
in the right CC, ¢ the crossing angle, w the CC frequency, (3;p is the § funtion in the
interacion point (IP),Bccr is the § funtion in the left CC, Socr is the § funtion in the
right CC, AWV, is the difference of the phase advance between the left CC and the IP,
AV, is the difference of the phase advance between the IP and the right CC and AV
is the difference of the phase advance between the left CC and the right CC. In the ideal
conditions AVqe = 7, so the equation (1.15) results

bt



Vg = L tan(%.) Boor (1.16)
qwv/ BrpBecrsin A¥s \| Beer

1.2.2 Global Crab Cavity

In the case of Global Crab Cavity, we put the CC in such way that cos(AV — 7Q) ~ 1,
we dont introduce another CC which compensates the effect of first CC (Figure.1.4). So
the effect of the transverse kick is in the entire lattice (Figure.1.5).

Beam?2

Figure 1.4: Scheme of the effect of the GCC in the horizontal axis of the bunch.

H crossing

P

GLOBAL CRAB CAVITY

Figure 1.5: The LCC scheme in the lattice for a circular accelerator with a horizontal
beam crabbed due to a CC.

So for the GCC we need to see how the transverse kick affect the bunch’s trajectory
when it pass again into the CC. We want that when the bunch makes a complete turn it
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has the same initial position, this can see like the effect of the translate Matrix plus the
transverse kick gives to us the same initial position.

ol [4)-12

So solving the equation (1.17) for z; and 2] is

-

The matrix (I — M)~! can be recast using M = e*?7 [4] with

J = [0‘1 o } (1.19)

In this way we can get that

(I _ M)—l — (I _ eQﬂ'QJ)*l
— (GWQJ(G—WQJ o 67rQJ)>—1
—(2J sin(7Q)) " (em@/) 7!
Je Q7
 2sin(7Q)
_ Jeos(mQ) + I'sin(7Q)
B 2sin(7Q)

(1.20)

so the equation the initial position will be

Rl M R T
snegileosn@) | 1 | snr) |3

T2 2sin(7Q)
Ap, By cos(7Q) ] (1.21)

) sin(mQ) [sin(w@) — ay cos(mQ)
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Now apply the traslate matrix to the initial conditions we get the effect of x due to a
Apy

|:$2:| o {Mn Mm} |:$1:| o {Mn Mu} Ap, [ B COS(WQ) (1 22)
x| Mo My |2f| | My M| 2sin(7Q) |sin(nQ) — ay cos(mQ) '

making a little of algebra, we get

z= 3 sﬁ??i@) (51 COS(WQ)\/%{COS(A\P) + g sin(AV) } + {sin(7Q) — a; cos(mQ) }+/ Fo b1 sin( AW
= QSﬁp;Q /5152 [cos(AT) + ag sin(AW)] cos(7Q) + [sin(7Q) — ay cos(mQ)] sin(AW)}
= oo Sﬁ?;@) V B1B2{cos(AW) cos(mQ) + a1 sin(AW) cos(mQ) + sin(7Q) sin(AW) — ay cos(m Q)

= ————\/ A\Ij -
2sin(w@Q) G113 cos Q)
For the equation (1.23) we have that for a GCC M is

A COS(AY = 7Q) Vi
12 —

2sin(7Q) (1.24)
The voltage for a GCC is
cE,tan() 2sin(7Q)
N qw cos(AV — 7Q)\/ 152
_cEy tan(%) 2sin(7Q) (1.25)

 qw/BrpBeoc cos(AT — Q)

where, ¢ is the speed of the light, E the particle energy, ¢ the crossing angle, w the
CC frequency, (rp is the § funtion in the interacion point (IP), Scc is the [ funtion in
the CC and AV is the difference of the phase advance between the CC and the IP.

The CC voltages are in agreement with the previous results [5].



Chapter 2

Luminosity Calculation

2.1 Introduction

For a two bunches which collides with the same number of particles NV, the same crossing
area A and they are moving in an opposite direction (Figure 2.1), any particle in each
bunch will “see” a fraction of the area of the other bunch NX” obscured by the interation
cross section o, and if the frequency of bunch collision is f, we obtain the number of

interaction per second (equation (2.1)) [4].

Bunch ;_x_J:

/’ N .,
—
Oy A N

Figure 2.1: Scheme of the collision on two bunch.

AR _ No,
dt A
So we define the luminosity like the interaction rate per unit cross section (equation

(2.2)).

(2.1)

c:f% (2.2)

and the units of the £ are em 2sec™!.



For two bunches with a certain distribution p(z,y, z) the luminosity becomes

L x KNiNyf N / / //pl(x,y, s — so)p2(x,y, s — so)dxdydsdsg (2.3)

with the kinematic factor K (because the beams are colliding) is given by

VT — G+ (7 )

K = — 2.4
e 24

If we can separate the distribution like
p1(z,y,5 = 50) = p12(T) pry(y) prs(s — S0) (2.5)

the luminosity of two colliding beams can be written as

L = KNiNof N,y / / //Pm(@ﬂyl(y)ﬂsl(& — 50)pa2(%) py2(y) ps2(s2 — So)dadydsds§2.6)

and assuming Gaussian distribution

- e (2.7)

With this consideration , the equation (2.6) becomes

2N N5 TN, —a12 *912 —(s1-50)2  _z92 —w2? _(s2-50)2

L= 5 N2 SNy e2e1e®yle 2051 e2a2e’v2e 2052 drdydsdsy
V2T 0410,10410420,20
yl1Us1V 20420 52

(2.8)

Here we made the Luminosity Calculation for three differents case:

CASE I : Head on Collision
CASE II : Crosing angle
CASE III: Crossing angle with a CC.
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2.2 Head on Collision.

The head on collision is the simplest case. They are two bunches moving in the oppositive
direction (Figure 2.2).

S0
S~
szl(x=.})=si*5‘0) szz(x,}),s +So)
— —

Figure 2.2: Scheme of the head-on collision on two bunch.

We see different cases.

1) First we assume that

Og1 = 02} Opl = Og2; Oyl = Oy} Ol 7 Oy1; Opl 7 Oy2. U1 = —03 80 K =2

so in the case of o, = 0y we have p;ps = p?. In this way the equation (2.8) becomes

2N N N 2 2 —92
E _ 1 2f b //// a% e v e Us e ‘75 dxddedSQ (29)
V21 0202072

we know that

/e“t2 = \/g (2.10)

1 1 1
%Y = 2.11
27r0§/e Y 2\/To, (211)

that’s means for each integral on equation (2.9) we have a term like (2.11), so the
equation (2.9) results

NNy f Ny

dro,oy

L= (2.12)

11



2) Second we have that
Os1 R Og2, Dut 0,1 # 0,9 and oy1 # 0yo.

So the equation (2.8) is

2 olero 2 2

2N N N —952 0z1+0z2 —s —S0
£ = ! 2f b //// 71 722 € 2 31 12/2 e oZ e o3 dxddedSO (213)

v/ 27T 0210 420,10 202

The firts integral has the result of

2 00y o7 2 2
1 o 1 2m0y1 04
e Ty19y2 dy = 3 2 (214)
20102 2m Oy 10y2 gt

making a little of algebra on the equation (2.14), we have

1 y2 (ry1+o' 1
_ e 2 yl y2 dy frnd (215)
2Moy10y2 2m(0)) + 02y)

for the last two term in the equation (2.13) have the same value of equation (2.11),
we obtain that the equation (2.13) is

NNy f Ny

2 2 2 2
2m\/0Z + 0% O+ 00

L= (2.16)
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2.3 Crossing Angle.

For the collision of two bunches which makes an angle when they collide (Figure 2.3).
This scheme is knows like the crossing angle (Figure 2.4).

/’ \

o (x, .5 —5) (X, .5 +50)

Figure 2.3: Scheme of the collision on two bunch with crossing angles.

x1 =xcos(=) — ssin
s1 = scos (=) + xsin

(2.17)
o = xcos (=) + ssin

ST

Sg = scos(g) — xsin

We assume that |vj| = |v3] = v, so the equation 2.4

402 cos?(2) — dv2 cos?(2)sin®(2) 202 cos(2)y/1 — sin2(2)
K= \/ 2 2 2 = 2 2 = 2cos2(§) (2.18)

2

v? v
Therefore, with crossing angle the luminosity integral is given by
L = 2cos’ (g)NlNZbe////pl(xl)p1<y)p1(51 = 50)p2(@2) p2(y) p2(s2 + s0)ddydsdEd.19)

We use a Gaussian distribution (2.7) and we assume that o4 = 0sx; 0,1 = 049;
Oy1 = Oy2; 0g1 7 041 and 0,9 # 0,9, so the equation (2.19) becomes

13
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Figure 2.4: Axis scheme of the collision on two bunch with crossing angles

2COS NlNngb —p? —(ep? —(g-s0)? —(sp+s)? -
////e 207 ¢ 2% e 23 e 203 e °v drdydsdsg (2.20)

Vor 020202

7 = (weos (5) - ssin (5))
= 122 cos? (%) — 275 cos <§) sin (?) + 5% sin’ (g)

s

~—
|
Vo)
(=)
~—
[\V]

(51— 80)* = (scos (5) + 2 sin (

O |

= 5% cos? ((g) + 2sx cos (?) sin (

¢
2

(O RS

) + 2% sin? (g) — 25¢(s cos (%S) + xsin (g)) + 52

2

x5 = (xcos (=) + ssin (5))2

) + 2sx cos (%) sin (?

h

(s cos (5) — xsin (5) + 50)?
) — 2sx cos (5) sin (%

) + 5% sin? (%

(CIRSS

= 2% cos® ( )
(52 —+ 80)2

= 5% cos? (

oS- |

) + 2% sin® (g) + 250(s cos (%S) — zsin (%S)) + 53
(2.21)

The integral over y is very simple we use (2.11) and for the other variables we use we

used the fact of
/6—(at2+bt+6) — \/Eebifac (2.22)
a
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making an arrange the equation (2.20) becomes

2(9
_ 2 cos (Q)NlNQbe 2\/_ /// —(aga?+bpr-tes) o—(ass®+bss+es) o= (asg s§+bsgs0+Csg) dxdsdg3.23)
Oy

4
/ 2 52
2T oi0;

with

Using (2.22), first we integrate with respect to  ( here will assume that

COSQﬁ
ay = —* ) on (2.23).

x

coszg sinQ%
Uy = —2— T —2
x S
b . 2sosin%
z = o2
c; =0
2 ¢ 2 ¢
o Sin P COSs 2
0, = T2 4 < (2.24)
ce =0
2
a/ e —
S0 O'g
by = 0
Cso =0
2 ~ 0 so

s

2(¢ 2
r— 2 cos ( 2 )N1N2be 1 mo, e_(sgal)6—(a852+bss+cs)6—(a508(2)+b5050+050)d8d68‘25)
/ot 0202 2\/mo, cos?

2

where a; = ;=
€T

b2 (2s0sin(§))? o2
ot

o
q

[N}
%

)

12
= S1n
4 cos? (%) (

So for the values of a1, ag, bs, s, asy, bs, and cg, (2.25) results

L:

2cos? (£) N Nof N,

1
/ 2 52
2m oi0;

2 o' sin? )+o’ c052(¢) s2
O, S - 2°)s?2 —-Y
2\/_0 // \ COS2¢ e e dsdsy (2.26)
)

No apply (2.11) in (2.26) results

B 2 cos? (%)NlNngb 1 o2 nolo? 5 9 97
B 4 2.2 2\/mo 22\ o2 2 cos2(2) V78 (2.27)
V21 0202 y \/ cos o2sin®(£) + 02 cos?($)



making a little of algebra

_cos (%)NlNngb 1

dmoy \/0'3 sin2(§) + o2 cosz(g)

If we factored o2 cos?(£) into the denominator we have

L NNafN,
B 47Tay0x o2 sinz(%)
o2 0052(%)

oS-

we assume for small ¢, we have tan(%) ~ sin(%) ~

The equation 2.29 results

o NiNofN, 1
dnoyo. 14 (22£)2
NNy f N, 1

o NN,

Amoyor \/1+ Gpiw

where ¢pi, = ﬁ% is the Piwinski angle.

Oz
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2.4 Crosing Angle with a CC.

The CC is a superconducting RF cavity operated in a transverse dipole mode, which
provides a transverse kick on the beam particles that varies with the longitudinal position
along the bunch center (equation (2.32)). This effect can produce a rotation in the beam

with a crossing angle %, so that produce the head-on collision.

V sin(¢, + =
Ap, = -2 Sm(g ) (2.32)

where ¢ the particle charge, V' the voltage of the CC, ¢4 the synchronous phase of the
CC, w the angular frequency of the CC, z the longitudinal coordinate of the particle with
respect to the bunch center, ¢ the velocity of ligth and E; the particle energy [3].

The expresion for the horizontal coordinate at the IP (interacion point) X, can be
express,

qV sin(¢s + =)

X = M3Ap, + Xo = — M E

+ X, (2.33)

where X is the value o X without effect of the CC. The voltage of the CC is

cE, tan(2)
V=——2>% 2.34
qu Mo ( )
replace equation (2.34) in (2.33) we have,
gsin(¢s + ) cE, tan(%) tan(2) wz
X=-M = Xo = s+ —)+X 2.35
12 £ s + Xo sin(¢s + - ) + Xo (2.35)

where we redefined ¢, + % = K..(s + ct) with K., = mcmb = ¢ . The change in the
horizontal coordinate produces for the CC (AXj 5) is,

tan(5) sin(K(s F ct)) =~ :I:Sin(%)

AXLQ == :i:
w cr

sin( K. (s F ct)) (2.36)
2.4.1 Crosing Angle with a CC for each Beam.

In this case we have one CC for each beam.
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Beam?2

Figure 2.5: Scheme of the collision on two bunch with crossing angles and with two CC

The coordinates are,

z1 = wcos ($) — ssin (§) + chr sin(K.(s — s9)) sin(%)

51 = §CO08 (%) + xsin (%5) (2.57)
2y = wcos () + ssin () — @ sin(Ke (s + s0)) sin($) :

$p = scos (§) — xsin (%)

with K. = Mgm”, so with those definitions we have the same equation of (2.20)

2 cos? NN N, *(zl)g *(z2)2 ~(s1-50)2 —(sats9)? =y
L= 1Nof b//// 27 ¢ 2% e 2% e 200 e °i doedydsdsg (2.38)

27T o? 0202

For the moment we call

dy = [gcr sin( K. (s — s9)) sin(g) (2.39)
and )
= = sin(Kon(s + 50) Sin(g) (2.40)
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[S]psS

22 = (vcos () — ssin (2) + di)? = 2% cos? (£) — 2xs cos ($) sin (£) + s?sin? (£)

)
+d? + 2d (z cos () — ssin (%))
(51— 50)? = (scos (2) +asin (2) — s9)? = s?cos? (£) + 2sz cos (
—2s9(scos (2) + asin (2)) + s3
73 = (zcos (&) + ssin (%) +dy)? = x?% cos? (%) + 2sx cos (%) + 52 sin? (%)
+d3 + 2dy(x cos (%) + ssin (‘5))
(s9+50)* = (s cos(‘é’) - :Esm( )+ s0)% = s?cos? (
+25¢(s cos (‘5) - xsm( ) + s3

[S]psS

)sin (£) + 22 sin? (2)

¢>
(3
X C

[NESS
[N]pSS

) — 2sx cos () sin (%) + 22 sin® (%)

(2.41)

now we write the equation (2.38) in order to use the formula (2.22), we get the same
equation of (2.23)

2c082 (2)N{NofN, 1 —(i+d})
r— ( B} )4 f e—(asz-&-bzx-&—cz)e—(a552+b55+cs)6—(a508(2)+55050+050)e T 202 ddedS()
V2m 0202 2y/mo,

(2.42)
with
cos? % sin? %
Ay = —(2 52
xT s
b — (d1+d2)cos(%) 2s0 sin%
T o3 - o2
c, =0
sin? % cos? %
s = —== + —
o 'S (2.43)
(d2 d1)sin(%) .
by = g
c, =10
_ 1
Agy = 0'_3
bs, =0
Cso =0
. . . sin2 & 29
with the same approximation (—2 52

) we integrate about x and the

result is the next

2(¢ 2, 2
_ 2cos® (§)N1 N2 f Ny // To? . s byt (s byt eag), (21‘7£d2)d8d50
1
V2 olo? 2\/_‘71/ COSQ¢
(2.44)

where
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2

_ 2 _ (ditda)cos(§)  2s0sin*(§)\2 o2 in2(2)o? ~
a = 1= = ( = 2 ) Teos(3) Ve know that sin®(5)o; ~ 0

That results

b2 (dy + dy) cos(2) o2
o= Lo el 1 (2.45)
day, o 4 cos*(%)

No making a little of algebra with (2.39) and with (2.40), we have that

dy +dy = e sin(K.-(s — so)) sin(g) - Kl sin(K-(s + so)) Sin(%)
= ;{i cos(K-s) sin(K-sp) sin(%) (2.46)

Here we use the relations:

sin(a £ b) = sin(a) cos(b) £ sin(b) cos(a)
cos(a £ b) = cos(a) cos(b) F sin(a) sin(b)

So a; becomes,

-9 , ' cos(2 o2
a; = (Kcr cos(Kps) sin( K -S) sm(g) 0(52))24(:%2(%)
_ cos?(Ks) sin?(K.50) sinQ(%b) (2.47)
KZo}
In the same way for b,
1 1
dy —dy = — sin(K-(s + s0)) Sil’l(%) - sin(K-(s — so0)) sin(g)
= }_( sin(K-s) cos(KerSo) sin(%) (2.48)

and we have

20



- sinQ(%ﬁ)(l — cos(2K..(s — s0)))
. e (2.49)

and

2 sin2(§)(1 — cos(2Ke-(s + s0)))

2 = IR (2.50)

we replace the values of a,bs,Cs,as,,bs,, d3, d3 and cg, in (2.44) results

‘- 2 cos? (%)4N1N2be 1 o2 /exp(—SQ(SiHQ(g) n COS2(§)>
\/ﬂ 0202 2ﬁ0y 0052§ 0'320 0'2
(QSin(KCTs) cos(K-s0) sin2(§)> (sg N cos?(Krs) sin?(K,.50) sinz(g)
’ KCT‘O-Q% U? Kc%"o-g
sin?(2)(1 — cos(2K,,.(s — s sin?(2)(1 — cos 2K, (s+ s
_sin(5)( (2Ker(s = 50)) _ sin(5)( @Rer(s 50D\ o ds2.51)
4K2.02 AKZ.0%

and we define Ny = Ny = N

(2.52)

Thats results

é 2 2(0 2 206
L= E,COS(Q) //exp(—LS(Q) _ % 2 () 4K? s* — 85K, sin(K,,5) cos(Kerso)

2 2 2 ;2
lop o2 4K:Zoz

—4c0o8*(Keps) sin? (Ko 80) + 2 — cos(2K (s — 80)) — cos(2Ker (s + 80)) dsdsy  (2.53)

2.4.2 Crosing Angle with a CC for just one Beam.

For the last we calculate the Luminosity for just one beam is crabed, so we take that the
beam 1 is crabbed.
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Beam?

Figure 2.6: Scheme of the collision on two bunch with crossing angles and with one beam
crabbed

For this case the coordiantes are

71 = zcos ($) — ssin(§) + 7 sin(Ke (s — 50)) sin($)
— ¢ in (2
Sy =S8cos(;)+xsin(s
2 = xcos(5)+ ssin(F)
s2 = scos(§) — xsin(§)

The luminosity becomes:

2

2 cos? NN N, (@)? —(%2)2 —(s1-50)2 —(sp+s0)? =y®
L= 1N/ b////e 27 ¢ 2% e 28 e 208 e °v dedydsdsy (2.55)

27T o? 0202

we call
dl -

: .9
T sin(K (s — s0)) sm(§) (2.56)

with
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2?2 = (zcos (2) — ssin (2) +di)? = 2% cos? (£) — 2wscos (£) sin (£) + s?sin® (£) + d3
+2d; (z cos (£) — ssin (%))

(51— 50)% = (scos (2) +asin (2) — s9)? = s? cos? (£) + 2sz cos (£) sin (2) + 22 sin® (£)
—2s9(scos (£) + wsin (2)) + s2

23 = (vcos (£) + ssin (2))? = 22 cos? (£) + 2sz cos (£) sin (2) + s? sin? (2)

(524 50)? = (scos (2) — asin (2) + s)? = 5% cos? (2) — 2sz cos (£) sin (2) + 22 sin® (%)
+250(s cos (£) — wsin ($)) + s

(2.57)

And working in the same way we have.

So now we write the equation (2.56) in order to use the formula (2.22), we get the

same equation of (2.23)

2(¢
£ _ 2 cos <§)N1N2be /// (agz +bzx+cz) —(ass? +bss+cs) (asosoerSOsoJrcso 62% dl’deSO
2\/_%

4
/ 2 52
2m 0503

(2.58)
with
COS2 % Sln2 %
Uy = —3— T —2
x S
b — d1 COS(%) QSOSin%
» = "7 77
ey, =0
sin? % cos? %
s ="zt~
_—dx sin(%) (259)
c, =0
_ 1
Agy = U—g
by, = 0
Cso =0
.3

with the same approximation (S —2 ~ 080 a; ~ CO; ) we integrate about x and the
result is the next
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2(9 2 —d?
_ 2 cos (2)N1N2be 1 // To 67(1167(a552+bss+cs)ef(aSOS%erSOsoJrcsO)62(,21 deSo
4 29
V2m oko? 2y/mo, cos® 3

(2.60)
where
b2 da COS(%) ZSOSin2(%) 2 a2 s 200\ 2
@m=E=(—gr-——0n>) oo (@) WO know that sin“(§)oz; ~ 0
x S 2
so that results
b? dy cos(2 2
a, = x ( 1 2(2) 2 UC; 5 (261)
day o; 4 cos?(%)
So we replace with the equation 2.56, we have that
B sin?(Ke (s — s0)) sinQ(%) COSQ(g) oz sin?(Ke (s — 89)) sinZ(%) (2.62)
= K2 ol 4cos?(%) a AKZ 0% ‘
and we have that ) 20
sin“(K,..(s — sg)) sin®(2

KCT

So we replace the values of a,bs,Cs,0s,,bs, d3 and c,, on (2.44) results.

- 2 cos? ( )NlNngb wo?2 // sm (%) +cos2(§))
N V2 0202 2\/_Uy cos? cep(= o2 o2

. sin(K (s — so)) sin?($ sin® (K (s — 50)) sin®($) _

( o (a_,%) K202
SiHQ(Kcr<S — 50)) sin2(§)
2K o2 )dsdsg (2.64)

And we define for Ny = Ny = N
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Thats results

5% cos?(2
+sin?(K(s — s0))))dsdsg
cos?(%)
o2 2
+sin( K- (s — 80)))?)dsdsg

(2.65)

(2.66)

The Luminosity calculations are in agreement with the previous results [5] and [6].
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