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Abstract
The use of crab cavities in the LHC may not only raise

the luminosity, but it could also complicate the beam dy-
namics, e.g. crab cavities might not only cancel synchro-
betatron resonances excited by the crossing angle but they
could also excite new ones. In this paper, we use weak-
strong beam-beam model to study the incoherent linear
tune shift of the weak beam, for the crossing collision case
and crab collision case with a finite crossing angle. The
tune shift is also compared among the head-on collision,
crossing collision and crab collision cases, both analyti-
cally and numerically.

INTRODUCTION
The beam instability induced by beam-beam interaction

is one of the most severe problems for the exsited and
future colliders. The luminosity in a storage ring is given
by

L =
N2fk

4πσxσy

(1)

where N denotes the bunch population (for collision with
two equal population bunch), f the revolution frequency,
k the bunch number in one beam, σx the horizontal bunch
size at IP, and σy the vertical bunch size at IP. From the ex-
periments, it is well kown that above some bunch density,
the luminosity will not increase proportional to N 2, but
proportional to N instead. This is the so-called beam-beam
limit and the associated beam-beam parameter ξ will be a
constant above some saturated bunch intensity. For a tune
far enough away from linear resonances, and a test particle
(in the weak beam) crossing a strong beam at small ampli-
tudes, the test particle experiences a linear quadrupole field
and thus has the linear tune shift (which is also the linear
beam-beam parameter ξ) as [1]

ξz =
βzδ

4π
=

Nr0βz

4πγσ∗2
(2)

where r0 = e2/4πε0mc2 denotes the classical particle ra-
dius, γ = 1/

√

1 − β2 the Lorentz factor, δ the inverse fo-
cal length of the quadrupole which represents the beam-
beam kick, z represents x or y, βz the horizontal or vertical
beta function at IP, σ∗ the horizontal bunch size at IP.
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CROSSING COLLISION
THEORY

To calculate the tune shift, Ruggiero and Zimmermann
first applied Maxwell’s equation to get the particle’s equa-
tion of motion in the strong beam’s coordinate frame, for
head-on collision case [2]. Then for the crossing collision
case with an angle θ = 2φ, they performed transformation
for coordinates, also for the electric and magnetic fields,
from strong beam coordinate frame to weak beam coordi-
nate frame. By that they could get the beam-beam force in
the weak beam coordinate frame, and integrate the deriva-
tive of the force times the beta function at IP over the lon-
gitudinal direction to get the linear tune shift of the test
particle (in the weak beam). Figure 1 shows the coordinate
systems used for their analysis, with a horizontal crossing
angle θ = 2φ.

Figure 1: Schematic of coordinate systems for the two col-
liding beams under a horizontal crossing angle θ = 2φ.
The s-x coordinates without asterisk refers to the frame for
the weak beam [2].

If the beams cross at one IP under a vertical crossing an-
gle θ, and cross at another IP under a horizontal angle θ,
the total tune shift ∆Qtot is the same in the two planes and
given by the sum of ∆Qx and ∆Qy [2]. For a special ex-
ample, if we consider the Gaussian bunches, with a bunch
length which is much shorter than the IP beta function β∗,
but much larger than σ∗, and with a small crossing angle θ,
we get a simplified expression of the total tune shift as

∆Qtot ≈ −
Nbr0β

∗

2πγσ∗
√

σ∗2 + θ2σ2
z/4

(3)

where Nb denotes the number of particles in a bunch, γ the
normalized beam energy, σz the bunch length.



SIMULATION AND COMPARISON
We perform simulation studies with the well known code

MADX [3] and SixTrack [4], to get the tune shift for a
test particle with small transverse amplitudes, and com-
pare them with the theoretical results expressed in formulae
2. For the simulations, LHC sequence V6.5 for beam 1 is
used and the beam parameters are as follows (also used for
the theoretical prediction): bunch length σz = 0.077m,
bunch intensity Nb = 1.1E + 11, β∗ = 0.55m, nor-
malised emittance ε = 3.75µm, proton energy E = 7TeV ,
full crossing angle θ = 2φ = 0 − 600µrad, RF voltage
Vrf = 16MV . In MADX 4-D beam-beam element is used
and the crossing angle at this element is changed by modi-
fying the strength of the crossing bumps. For SixTrack the
beam-beam element is available in the 6D form by apply-
ing Hirata’s treatment. In both codes the beam-beam ele-
ment is longitudinally 5 sliced. For the case that one ver-
tical beam-beam element is placed at IP1, and at the same
time one horizontal beam-beam element is placed at IP5,
the linear tune shift versus half crossing angle φ from the
simulations and from the theory (formulae 2) are plotted
together in Figure 2 where good agreement is found.
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Figure 2: Comparison of tune shift between the MADX
(red), SixTrack simulations (blue) and the theory (green):
horizontal detune (top); vertical detune (bottom)

Also simulation is performed for another two cases: one
vertical beam-beam element at IP1 alone, and one horizon-
tal beam-beam element at IP5 alone. The tune shift ver-
sus half crossing angle φ for these two cases are shown
together with the previous case, also with the crab collison
case which will be introduced in next section, in Figure 3.

CRAB COLLISION
THEORY AND MODIFIED CODE

The crab cavities (CC) have been proposed for both lin-
ear [5] and circular colliders [6], to restore an effective
head-on collision at the IP. The crab cavity gives rise to a
z-dependent transverse kick on the beam particles, as well
as to a change in the longitudinal momentum. To calculate
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Figure 3: Horizontal detune (top) and vertical detune (bot-
tom): one horizontal BB element at IP5(H) (red); one verti-
cal BB element at IP1(V) (green); one vertical BB element
at IP1(V) plus one horizontal BB element at IP5(H) (blue);
and crab collision case (magenta)

the tune shift of crab collision case, we use weak-strong
model, Hirata’s formalism [7] and follow the treatment im-
plemented in SixTrack code by Leunissen et al. [8]. For
the crab collision case, we use the same Lorentz boost (for-
mulae 2.23 of [8]) which is introduced by Hirata [9] as ex-
pressed in formulae 4, which consists of a transformation
from Cartesian to accelerator coordinates, and a Lorentz
boost from crossing collision to head-on collision.

L0 =









1/ cosφ − sinφ − tan φ sin φ 0
− tanφ 1 tan φ 0

0 − sinφ cosφ 0
0 0 0 1









(4)

where L0 denotes the boost, φ the half crossing angle.
The calculation of the beam-beam force is done by ap-

proximating the strong bunch by a number of longitudi-
nal slices. Due to crab collision, the first and second mo-
menta of the particle distribution at the longitudinal slices
are modified and expressed in formulae 5 (which is differ-
ent from formulae 2.42 of [8]), and then the beam-beam
force is calculated accordingly.
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where X = (X, PX ; Y, PY ; Z, PZ)T denotes the coordi-
nates of the strong bunch, Σ the 6×6 phase-space envelope
matrix of the strong bunch.

The synchrobeam mapping (SBM) formulated only for
head-on collision [7] is then applied at IP. After that the
particle’s coordinates are transformed back to the original
accelerator frame, and transformed through arc. The Six-
Track code is modified according to the above mentioned



crab collision case and a new version is used to calculate
the tune shift.

TUNE SHIFT OF CRAB COLLISION
The optics and beam parameters used are the same with

the crossing collision case, and two local linear crab cav-
ities (20-MHz) are placed at both sides of IP5 to recover
head-on collision at IP5. The tracking is done for beam
1 (weak beam) as a test particle, and beam 2 is treated as
the strong beam which the beam-beam element represents.
For the crab collision case (two beams crabbed) that has
one vertical beam-beam element at IP1 plus one horizon-
tal beam-beam element at IP5, the linear tune shift from
the simulation is found to be the same as the head-on tune
shift, as shown by the magenta curve in Figure 3. A similar
result is found for the crab collision case that has only one
horizontal beam-beam element placed at IP5, as shown in
Figure 4.
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Figure 4: Horizontal detune (top) and vertical detune (bot-
tom): crossing collision with one horizontal beam-beam
element at IP5(H) (red); crab collision with the same beam-
beam element at IP5(H) and two beams crabbed (blue)
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Figure 5: Horizontal detune (top) and vertical detune (bot-
tom) versus ∆z: crossing collision (red); crab collision
with only beam 2 crabbed (blue); crab collision with both
beams crabbed (magenta); head-on collision (green)

With synchrotron oscillation, we compare the tune shift
of crossing collision case, crab collision with only beam
2 crabbed, crab collision with two beams crabbed and
head-on collision case, for particles with different longitu-
dinal coordinate ∆z in a bunch (and with small transverse
offsets), with the results shown in Figure 5 (with only one
horizontal beam-beam element at IP5). We observe that the
tune shift of the crab collision with two beams crabbed is
almost recovered to be equal to the head-on collision case,
especially for particles with smaller longitudinal offset.
For the two beams crabbed case, as the local linear crab
cavities are used, a particle that has a large longitudinal
offset (∆z = ±3.5σz) also gets a linear crab cavity kick,
and thus has a detune just as the head-on collision case.
Since beam 1 is treated as a test particle, for ∆z = 0,
the beam 2 crabbed case is identical to the two beams
crabbed case. For ∆z 6= 0, the tune shift of one beam
crabbed case is between that of crossing collision case and
head-on collision case; and especially for particles with
large longitudinal coordinate (∆z > 2σz or ∆z < −2σz),
the tune shift from one beam crabbed case is quite small
which almost equals the tune shift of crossing collison case.
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